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Abstract

Linearized Lagrangian equations developed in the first part of the paper were employed for static analyses of cyclic
cylindrical tensegrity modules. Linearized equilibrium equations at natural configurations were used to investigate
initial shape, static and kinematic indeterminancy, pre-stress and infinitesimal mechanism modes, and the sensitivity
analysis of initial geometry. Linearized equilibrium equations at pre-stressed initial configurations were utilized to
investigate pre-stress stiffening and to distinguish first-order mechanisms from higher-order mechanisms. To estimate
critical loads for bar buckling and cable slacking, nonlinear equilibrium equations were employed to compute element
forces. Further, the equivalence between the twist angle theorem obtained from a geometrical consideration and the
equilibrium analysis was established for cyclic cylindrical tensegrity modules. It is concluded that infinitesimal mech-
anism modes and pre-stresses characterize the static and dynamic response of tensegrity structures. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In order to examine static and kinematic determinancy of structures, small deformation equilibrium
equations have been investigated. For a truss structure with ng elements or members and 7y nodes or joints
with nc displacement constraints, there are ny = 3ny — ne unknown displacement components. In this
paper, it is assumed that nc = 6 to constrain each structure against rigid body motion. Let the element
internal force vector be denoted by s, an ng x 1 column matrix, and the external nodal force vector by f, an
ny X 1 column matrix. The initial equilibrium equation for small deformation is expressed as

As =, (1)
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where A is an ny X ng matrix which depends on the initial geometry through direction cosines of truss
elements (1.24b,c). In this second part of the paper, equations from the first part are referred to with the
preface of 1, such as (1.24b,c) for (24b,c) of the first part.

Maxwell (1864, 1890) classified the stiffness of a truss by the difference between the element number ng
and the active or unknown degrees of freedom ny:

Mx = ng — ny, (2)

where Mx is the Maxwell number. According to Maxwell, if Mx > 0, truss structures are redundant. If
Mx = 0, trusses may be statically determinate. If Mx < 0, trusses become kinematically indeterminate. As
exceptions to the above for Mx < 0, Maxwell noted structures which exhibit “inferior order of stiffness”,
i.e., the stiffness of the order of pre-stress. Calladine (1978) observed that most of tensegrity structures
introduced by Mark and Fuller (1973) possess mechanisms that could be stiffened by pre-stress to achieve
“infinitesimal mechanisms” which exhibit Maxwell’s inferior-order stiffness. By investigating the vector
spaces associated with A in Eq. (1), Calladine (1978) obtained the relationship between the number of pre-
stress modes ng and the number of infinitesimal mechanism modes ny; as

Mx = ng — ny. (3)

Both Maxwell and Calladine utilized static equilibrium equations.

From a view of kinematic constraints of rigid linkages, infinitesimal mechanisms of truss structures were
also investigated. A representative cross-section of this approach may be found in the papers by Kuznetsov
(1988, 1991a,b) who investigated the constraints of element lengths in the Pfaffian form: As = 0 and derived
Eq. (3).

By analytically establishing the equilibrium equations of space trusses with cyclic cylindrical symmetry,
Tarnai (1980a) obtained the tensegrity conditions with infinitesimal mechanisms. In a subsequent paper,
Tarnai (1980b) classified mechanisms into ‘““finite” and “infinitesimal” mechanisms. The former is a
mechanism with finite motion, while the latter is that with infinitesimal motion with the stiffness of infe-
rior order. Tarnai posed two questions regarding statically and kinematically indeterminate structures: (i) a
pre-stressability condition and (ii) a criterion for distinguishing infinitesimal mechanisms. Koiter (1984)
rephrased Tarnai’s question to distinguish first-order infinitesimal mechanisms from higher-order infini-
tesimal mechanisms. Pellegrino and Calladine (1986) successfully answered Tarnai’s questions by com-
puting linearly independent row and column vectors of A for (i) and by counting the dimensions of the
“product” forces for (ii).

In traditional truss (frame) design, designers place nodes freely to meet their design objectives by
properly connecting them to form a simple or compound space truss to satisfy rank A = ng (e.g., Timo-
shenko and Young, 1965; McCormac, 1984). On the contrary, in the tensegrity structural design with first-
order infinitesimal mechanisms, i.e., rank A < ng, designers cannot place nodes arbitrarily. Typically, a
designer selects a specific tensegrity “module” with a specific pre-stressed mode s and assembles the
modules to form a desired structure. In tensegrity structural design and analysis, initial configurations must
be found. This process is referred to as “shape finding” (Hanaor, 1988) or “form finding” (Motro, 1990).
Furthermore, tensegrity structures experience large deformations due to infinitesimal mechanisms.

The objective of the second part of the paper is to perform equilibrium analyses of basic tensegrity mod-
ules by utilizing linearized Lagrangian equations. The following results were obtained from static analyses:

(1) Pre-stress and infinitesimal mechanism modes were defined based upon a singular value decomposi-
tion of the initial equilibrium matrix A.

(i1) The existence of maximum or minimum length elements was shown for cyclic cylindrical tensegrity
modules by finding the equivalence between Tarnai’s solution (1980a) and the twist angle theorem pre-
sented by Tobie (1967) and Kenner (1976).
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(ii1) Starting from a known tensegrity structure, a constraint equation was presented for shape modifi-
cation in the configuration space. Further, the pre-stress and infinitesimal mechanism modes are insen-
sitive to initial geometrical imperfection and small changes of geometry.

(iv) An analytical expression was obtained for the stiffness of pre-stressed tensegrity structures. If the
tangent stiffness matrix is positive definite, the structure is a first-order infinitesimal mechanism. Other-
wise, it is a higher-order infinitesimal mechanism;

(v) Element forces were computed to estimate critical loads for bifurcation-type slacking of cables and
buckling of bars.

Due to page limitations, only basic tensegrity modules were investigated as examples. Analyses of
spherical tensegrity modules and tensegrity structures with repeated tensegrity modules are deferred to
subsequent publications. In the following, linearized truss equations are employed to investigate: (i) initial
equilibrium, (ii) initial shape finding of cyclic cylindrical tensegrity modules, (iii) stiffness of pre-stressed
tensegrity structures, and (iv) sensitivity of initial geometrical imperfection. Initial equilibrium analyses
reveal that a class of tensegrity structures with Mx < 0 is both statically and kinematically indeterminate.

2. Initial equilibrium analysis

For small deformation of a truss structure at the natural state, Eq. (1) is derived from Egs. (1.24b) and
(1.24c) by noting that g© = G at r = 0. Eq. (1) is also obtained from (1.35) at ¢ = 0 with (1.34c) evaluated
at d = 0. The present derivation of pre-stress and infinitesimal mechanism modes differs from that of
Pellegrino and Calladine (1986) in the use of: (i) Clapeyron’s theorem instead of the principle of virtual
work and (ii) the singular value decomposition of A instead of the row-echelon form of the augmented A.

Let R™ denote the vector space of nodal displacement vectors d of ny x 1 column matrices, and R"™
signify the vector space of element elongation vectors & of ng x 1 column matrices. The linear work
functionals f* form a co-vector space R™. The corresponding nodal force vector f in R is defined via the
inner product as

() =(fd, =fd (4a)

ny
Similarly, the strain energy functionals s* form a co-vector space R™. The element internal force vector s in
R™ is defined via the inner product as

s'(e) = (s,8),, =s-¢& (4b)

The equilibrium equation (1) defines a linear transformation A from R™E to R™. For small deformation,
Clapeyron’s theorem (Sokolnikoff, 1956) states that the work done by surface traction and body forces
acting through the displacements from the natural state to the deformed equilibrium configuration is equal
to twice the strain energy of the body if it obeys Hooke’s law. The theorem yields

(f.d),, = (s,8),,- (5)

By substituting the linear transformation (1) into Eq. (5), one obtains the adjoint (transpose) transfor-
mation of A from R" to R™ as

(As,d), = (s,A"d), . (6)

ny

This definition of the element elongation ¢ agrees, as it should, with that obtained from Egs. (1.32a) and
(1.32¢) evaluated at d = 0 for small deformations:

e=A"d. (7)

The null and range spaces of A and AT are defined as
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null A = {s|As =0,s € R}, (8a)
null A" = {d|A"d =0,d € R}, (8b)
range A = {f|f = As,Vs € R}, (8c)
range A" = {¢|e = A"d,Vd e R"}. (8d)

Let dim ( ) denote the dimension of ( ). By noting that r, = dimA = dimA" = dim(range A)=
dim(range A", ra <ng, and r5 <ny, Calladine (1978) observed

ng = ns + Fa, (9a)

ny = Ny + Fa, (9b)

where ng = dim(null A) is the number of pre-stress modes, and ny = dim(null A") is the number of in-
finitesimal mechanism modes. From Egs. (2), (9a) and (9b), Calladine’s relation (3) was derived. Further,
Pellegrino and Calladine (1986) presented a physical interpretation of Eqgs. (8a)—(8d). Structures are stat-
ically indeterminate if ng > 1 and kinematically indeterminate if ny > 1.

Referring to Fig. 1, null A includes pre-stressed element force modes in self-equilibrium; null AT contains
mechanism modes without elongation; range A consists of admissible external loads; and range AT is
composed of elongation modes induced by displacements. After merging the co-vector spaces with vector
spaces in Fig. 1 by introducing the inner products (4a) and (4b), the physical interpretation of the com-
plementary spaces becomes available. Let ( )~ denote the orthogonal complement of ( ). The subspace
(range AT)* = null A consists of incompatible element elongation vectors; (range A)* = null AT contains
inadmissible external loads; (null AT)* = range A is composed of displacements with nonzero element
elongation; and (null A)* = range AT includes element force modes in equilibrium with admissible external
loads.

To obtain base vectors in the above spaces, the singular value decomposition theorem (Noble and
Daniel, 1977) is utilized. Pellegrino (1993) also employed this theorem for kinematic and static analyses of
equilibrium matrices. It is known that » x n symmetric matrices have real eigenvalues and orthonormal sets
of n eigenvectors. Therefore, ATA and AAT have, respectively, ng and ny eigenpairs.

Further, both ATA and AAT are positive semi-definite, i.e., det(ATA) > 0 and det(AA") > 0 indicating
that their eigenvalues are positive or zero. There are ra(=rank A =rank A") positive eigenvalues:
=0z > J,Z,A > 0 where positive ¢’s are called the singular values of A. The ordered eigenpairs in the
decreasing singular values satisfy

R kv R *"E

Fig. 1. Null and range spaces of A and AT in the spaces of nodal force/displacement and element force/elongation vectors.
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ATAS,*:O'?S,', = 1,2,...7}1}37 (loa)
AA'd =oid;, j=1,2,...,ny. (10b)
In R, S = [s1 s> ... s,.] is an orthonormal basis, while D= [d; d, ... d,,] is an orthonormal basis in

R"™. By using the ny x ny orthonormal matrix D and the ng x ng orthonormal matrix S, A is decomposed
into

A=DIS, (11a)
where 2 is an ny x np matrix with singular values on the diagonals of the first r5 rows:
rep 0 ... 0 07
0 gy ... 0 0
=0 0 0 o, 0 (11b)

o 0 -~ 0 O

The ecigenvectors s; corresponding to zero eigenvalues of Eq. (10a) span null A composed of pre-stress
modes, while eigenvectors d; corresponding to zero eigenvalues of Eq. (10b) span null AT consisting of
mechanism modes. The physical interpretation of Eqs. (8a)—(8d) becomes clear if the following coordinate
transformations are made:

§=STs, (12a)
&= Se, (12b)
f=D'f, (12¢)
d=D"d. (12d)

Egs. (1) and (7) are rewritten as
Ss=1, XTd=4a (13)
In the first term of Eq. (13), the s-components corresponding to zero eigenvalues of Eq. (10a) represent
the amplitudes of pre-stress modes, while the f-components corresponding to zero on the left-hand side
denote the amplitudes of inadmissible external loads. In the second term of Eq. (13), the d-components
corresponding to zero eigenvalues of Eq. (10b) describe the amplitudes of infinitesimal mechanism modes,
while g-components corresponding to zero on the left-hand side represent the amplitudes of incompatible
element elongations.

The eigenproblems of Egs. (10a) and (10b) can be easily solved by using, for example, Jacobi’s method
(Bathe, 1982) or the Lanczos method with shifting (Hughes, 1987).

3. Shape finding of cyclic cylindrical modules

In this paper, a class of tensegrity modules which satisfies Mx = ng — ny <0 and ng = dim(null A) = 1
are considered. For regular trusses with Mx = 0, det A > 0 implies statically and kinematically determinate
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structures. On the contrary, tensegrity structures collapse if detA > 0 due to the earth’s gravity or other
minute disturbances since slender cables cannot carry compression. Tensegrity structures with Mx < 0 can
only exist if there is a pre-stress mode, i.e., det(ATA)=0, to stiffen the structures. Further, due to Calla-
dine’s relation (3), tensegrity structures with Mx < 0 possess both infinitesimal mechanism and pre-stress
modes. There are some “redundant” tensegrity modules with Mx > 0 and rank A =ny. These are excluded
from the present study since they do not require initial shape finding and do not possess infinitesimal
mechanisms.

As basic examples, regular cylindrical tensegrity modules are considered in this section. They have been
utilized as basic tensegrity modules to build more complex tensegrity structures such as a two-stage
tensegrity (Skelton and Sultan, 1997) and a double-layer tensegrity shell (Hanaor, 1988, 1993). The con-
dition for the existence of a pre-stress mode, detA = 0 for Mx = 0, i.e., ng = dim(null A) > 1 was ana-
lytically investigated by Tarnai (1980a). Since rank A = dim(range A) is the number of independent
columns of A defined by element direction cosines, a “brute force” experiment to find dim(null A) can be
conducted by cutting a cable of an existing tensegrity module one at a time. If the module collapses, the
maximum number of cables cut shows dim(null A). An analytical method is to count the algebraic mul-
tiplicity of each real root of the characteristic equation det(ATA)=0. Tarnai’s characteristic equation, Eq.
(12), shows that dim(null A) = 1 for regular cylindrical tensegrity modules. Unfortunately, it is not easy to
build A and analytically find det(ATA)=0.

A simpler alternative approach is possible for some regular cylindrical and spherical tensegrity modules.
Both Mobius (1837) and Maxwell (1890) noted that a tensegrity state renders one or more elements to their
maximum or minimum lengths. The twist angle theorem, which was credited to Tobie (1967) by Kenner
(1976), yields Tarnai’s tensegrity conditions from a simple geometrical analysis. In the following, the twist
angle theorem is introduced and the equivalence between the geometrical approach and the equilibrium
approach is established.

Consider regular cylindrical tensegrity modules inscribed by a conical cylinder whose height is bounded
by top and base regular n-polygons, n = 3,4, 5, ... Fig. 2 illustrates a set of generating nodes and elements.
Let the nodes of the top n-polygon be numbered in the counterclockwise direction from 1 to n, while the
corresponding nodes on the base n-polygon be numbered from (n + 1) to 2n. The top n-polygon is twisted
by o + 27t/ in the counter-clockwise direction, as shown in Fig. 2. Let the height of the cylinder be denoted
by h. The radii of the top and base circles circumscribing the n-polygons are ry, and ry, respectively. A special

Fig. 2. The twist angle theorem for an n-bar cyclic cylindrical tensegrity module.
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case r, = ry yields the right cylindrical truss investigated by Tarnai (1980a). A bar element connects nodes 1
and (n + 1). The cable elements connect the nodes: nto 1, (n + 1) to (n + 2), and (n + 2) to 1. Let the origin
of the Cartesian coordinate system {x, y,z} be placed at the center of the base circle with the z-axis in the
axis of the cylinder and node n+ 1 on the x-axis. The cylindrical coordinates of the nodes are 1
(rny 2n/n+a,h), n (ry, o, B), n+1 (ro, 0, 0), n+ 2 (rg, 2n/n, 0). It is assumed that the bar length » and
the radii of the circles, r, and ry, are fixed. The length of the equilateral cables of the top n-polygon
is Iy = 2rysin(w/n), while the length of the cables of the base n-polygon is /y = 2rysin(n/n). Let the
length of the vertical cable connecting nodes 1 and (n + 2) be /. One computes b and / in terms of ry, ro, /,
and o as

2
b:\/r§+r5—2rhrocos<7n+oc> + 12, (14a)

I =/r} 4+ r3 — 2mrocosa + h2. (14b)

If 4 is eliminated from Eq. (14b) by using Eq. (14a), one finds

(o) = \/b2 —|—2rhro{cos (27“4—&) - cosoc}. (15a)

The extremization of / with respect to the twist angle o, i.e., d//do = 0, yields

2
sin<7n+oc) = sino = sin (1 — a). (15b)
The twist angle theorem of Tobie (1967) and Kenner (1976) is obtained from Eq. (15b) as
T T
——_ 16
r=5 = (16)

The result shows that the twist angle is independent of the tapering ry,/ry. One can obtain the same result if
the top n-polygon is twisted in the clockwise direction. The twist angle predicted by Eq. (16) agrees with
Tarnai’s twist condition (13) and (14). The corresponding pre-stress mode can be obtained by solving
equilibrium equations (1.17) with f; = 0, at nodes 1 and (n + 2). Let the internal element forces due to the
pre-stress be denoted by sy, sy, So, and s,, respectively, for the bar, the top cable, the base cable, and the
vertical cable. An admissible pre-stress mode is obtained with tension in cables and compression in bars as

S
[sy s so]:—gb[l ro ). (17)

All nodal coordinates are determined by /(o) and fixed parameters, n, b, r,, and ry. The elements of

A = [a;] consisting of element direction cosines become functions of the variable length: a;; (/(«)). Since

ATA is a positive semi-definite continuous function of a:

O(x) = det(ATA) >0, (18)
QO(a) = 0 if and only if dQ/do = 0.

dQ - B dc,, dl .

i <;C0f(cz/‘) T ) FPi (19)
where Cof{(c;;) denotes the cofactor of ¢;; = ai; ay; with summation for k = 1,...,ny. If rank A =ng — 1,

which implies ng = dim(null ATA)=1, there is at least one nonzero cofactor of C = ATA. Therefore,
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dQ/do = 0 if and only if d//da = 0. By combining the above results, d//do = 0 becomes necessary and
sufficient conditions for Q = 0. The sign of the second derivative of / with « decides whether / takes a
maximum or a minimum at dQ/do = 0. This geometrical method has only a limited value since it works
only for a class of regular tensegrity modules whose direction cosines are described by one unknown length
/(o) of a parameter o. However, when this method works, it is much simpler than the equilibrium approach
reported by Tarnai (1980a). The above method could fail and yield an unrealistic configuration at
d//de = 0, such as vanishing elements, / = 0. Further, if there are more than one unknown lengths, the
geometrical method fails.

In summary, the conditions for tensegrity structures are Mx <0, det(ATA)=0, and the existence of an
admissible pre-stress mode with tension in a continuous set of cables and compression in discontinuous
bars. It will be shown in the sequel that the application of a pre-stress mode transforms tensegrity structures
from kinematically indeterminate mechanisms to kinematically determinate first-order infinitesimal
mechanisms. According to Koiter (1984), first-order mechanisms exhibit infinitesimal displacements ac-
companied by second order elongation of at least some of the elements. The regular cylindrical tensegrity
module, shown in Fig. 2, possesses an infinitesimal mechanism characterized by twisting bars in the
counter-clockwise direction. For n = 3 and 4, the twisting mechanisms computed by using Jacobi’s method
are shown in Fig. 3a and b, respectively. In the figures, solid lines show infinitesimal mechanism modes and
dashed lines show the equilibrium configurations.

In Fig. 2, if one rotates the top n-polygon by o instead of o + 21t/n in the counter-clockwise direction, the
condition d//da = 0 is only found for even n as

a:g, n=2406,... (20)

The same result is obtained if one rotates the top n-polygon by « in the clockwise direction. The two
symmetric configurations for n = 4 were plotted by Tarnai (1980a) in his Fig. 4c and d. By constructing
equilibrium equations at a top node and a base node, and by computing a pre-stress mode, one finds that
the pre-stresses alternate signs in adjacent top and base cables. Furthermore, it will be shown in the sequel
that due to the alternating sign of pre-stresses, the stress stiffening effect cancels out. As a result, the truss
structure becomes a higher-order mechanism. According to Koiter (1984), an infinitesimal mechanism is
referred to as second order if there exists an infinitesimal motion such that no element undergoes an
elongation lower than the third order.

Fig. 3. Infinitesimal mechanism modes of (a) three-bar tensegrity module and (b) four-bar tensegrity module.
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4. Stiffness of pre-stressed tensegrity structures

For a pre-stressed tensegrity structure, static equilibrium equations for small deformations are obtained
from Egs. (1.36a)—(1.36c). The tangent stiffness Kt may be decomposed into the initial stiffness K, em-
ployed for small deformation truss analyses, and the pre-stress stiffness K; as

Krd = (Ko + K)d =T, (21a)
where
ng
Ko = Lg K{'Lg, (21b)
e=1
ng T
K, =) Lg“ K Lg", (21c)
e=1
Ko - (%47 66" -GGT]" (1d)
O =\ I ~GG" GG" |
Sll(O)Ao (©) 1 —1I
K = ( 220 3 3. 21
s ( lo I I (21e)

Egs. (21c) and (21e) show that the pre-stress stiffness at each node is “isotropic’ since the nodal stiffness is
the same in all directions. If ng = dim(null A)=1 and tensegrity modules are cyclic or spherical, all elements
have nonzero pre-stress S;(0). Therefore, pre-stress stiffening is applied to all elements. Further, for a
mechanism mode dy; = d,, in D of Eq. (11a), the stiffness is induced only by K; since K, dy; = 0. Pellegrino
and Calladine (1986) called K, dy the “product force”. They used the number of linearly independent
product forces to distinguish first-order mechanisms from higher-order mechanisms. The subsequent de-
velopment regarding mechanisms may be found in the papers by Kuznetsov (1988), Calladine and Pel-
legrino (1991, 1992), and Pellegrino (1993).

Since Kr is available in this paper, det Ky is utilized for the classification of infinitesimal mechanisms. If
det K1 > 0, pre-stressed tensegrity structures are first-order mechanisms, and if det Ky = 0, they are higher-
order mechanisms. When the pre-stresses are nonzero in every element and det Kt > 0, it is observed from
Egs. (21¢) and (21e) that a single pre-stress mode stiffens ““all infinitesimal mechanisms”.

It is expected that the initial response of pre-stressed tensegrity structures is characterized by soft in-
finitesimal mechanism modes resisted only by K in Eq. (21¢). Since the infinitesimal mechanism modes are
global in regular cylindrical and spherical tensegrity modules, the initial response of tensegrity modules is
always “global”. Even if one tries to locally deform the tensegrity module shown in Fig. 3a by applying a
nodal force at one node, the initial deformation is described by a global twisting of bars.

Examples of second-order mechanisms include Tarnai’s symmetric, cyclic cylindrical truss for even n
with the top n-polygon rotated by « as in Eq. (20), instead of « + 2n/n as illustrated in Fig. 2. This structure
does not possess a tensegrity pre-stress mode. Rather, the pre-stress mode induces compression in cables.
One can show after straightforward calculations that the diagonal terms of K, vanish to cause det Kt = 0.
To investigate the response of the structure with higher-order mechanisms, one has to recourse to the
nonlinear equilibrium equation (1.23) or (1.35). The updated Lagrangian FE code, which solves Eq. (1.23),
was employed for quasi-static loading to confirm that the infinitesimal mechanism was in fact second order.
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5. Hardening-type load—displacement relations

In other works, the stability of tensegrity structures was investigated by using different mathematical
criteria (Connelly and Whiteley, 1992). Here, the stability analysis is performed within the framework of
large deformation kinematics and statics of trusses. The stiffness analysis, presented in the above, is only
valid for small deformation at the neighborhood of an initial pre-stressed configuration. Upon loading,
infinitesimal mechanisms, illustrated in Fig. 3a, b, are activated and induce large deformation. Fig. 4 il-
lustrates the vertical load and load-point displacement relation of the three-bar cylindrical tensegrity
module, shown in Fig. 3a. The same vertical load is applied in the z-direction at each top node. The solid
lines are the prediction of the updated-Lagrangian FE code at various initial pre-stress amplitudes. The
predictions of the FE code were validated by using Mathematica which also solved nonlinear equilibrium
equation (1.23). Model experiments qualitatively agree with the FE prediction. The initial tangent stiffness
near the origin of Fig. 4, predicted by Eq. (21a), increases linearly with increasing pre-stress, see Eq. (21e).
As Fig. 4 illustrates, the linear range is extremely small. If bars do not buckle, the load—displacement re-
lation reveals increasing stiffness as Eqs. (1.32¢) and (1.34c¢) predict. Skelton and Adhikari (1998) first
reported the axial load—displacement relation of a two-stage tensegrity, which also exhibited hardening
response. For tensegrity structures with infinitesimal mechanisms, the load—displacement relation is char-
acterized by a nonlinear hard spring.

Both buckling of bars and slacking of cables are of a bifurcation type since an unstable equilibrium path
of a straight cable or bar under compression exists. A post-buckling behavior of beams (bars) is “imper-
fection sensitive” as Budiansky (1974) explained. A critical load should be determined by either conducting
the experiments or performing a nonlinear FE analysis. For the loading shown in Fig. 4, the element forces
are plotted in Fig. 5 as a function of load-point displacement. The cable tensile forces increased with the
vertical loading in both tension and compression, and the cables did not slack. Cable slacking was only
observed under loading modes that excite deformation modes without mechanism modes. Cable slacking
was reported by Skelton and Adhikari (1998) for the bending deformation of a two-stage tensegrity
structure.

Let a load parameter be denoted by A so that f = if,. The corresponding displacement d(4) is obtained
as a nonlinear function of A from the quasi-static equilibrium equation (1.23) or (1.35). An estimate for
slacking or buckling loads could be obtained by first identifying slacking cables or buckling bars and then

FIN]

0.01
2x104[Pa]
6x103[Pa] |
4x10%[Pa][ |
2x103[Pa] || 7
0.005[

|

Lo P4 L1 IAZIm]
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Fig. 4. Load-displacement relation of the three-bar tensegrity module at various pre-stress amplitudes.
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Fig. 5. Element forces-load-point displacement relation of the three-bar tensegrity module with the initial bar pre-stress force 10* Pa.

computing the stress increment from Eqgs. (1.12a), (1.32a) and (1.32c) with d(4). In this section, bars and
cables are assumed to be linearly elastic with Young’s modulus Y; independent of Ej; in Eq. (1.12b). When
the sum of the element force increment and the initial element force becomes a critical load —P,,, of the
element, a buckling or slacking is expected to occur. The element critical values are P, = 0 for cables and a
fraction of the Euler critical load: P, = n*Y,//I3/SF for bars, where I is the areal moment of inertia of the
beam (bar) and SF is a safety factor. In the Euler critical load for beam buckling, the safety factor SF =2.5
or 3 is used to reflect the imperfection sensitivity. If d(Z) is available, a critical load parameter A, may be
estimated by using (1.12a) and computing the strain increment from Egs. (1.25a), (1.31a)-(1.31¢) as

. Yodo \ g 1 _
(S1140)“ (0) + ( 0 0) {[—GT GT]()+W“(E)U‘”)T[ § 113]}%(%):—&” (222)
—13 3

lo Iy
where
d“(2) = Lgd(A). (22b)

Fig. 5 shows the resultant element forces, i.e. the left-hand side of Eq. (22a), computed by using the updated
Lagrangian FE code. Several attempts to estimate the second term of Eq. (22a) on the left-hand side by
using d(4) ~ 1 dy with a mechanism mode generalized for large rotation failed, yielding a much stiffer
response than that shown in Fig. 4. Therefore, to obtain reliable critical loads, nonlinear equilibrium
equations must be solved for element forces. In the next section, the sensitivity analysis against initial
geometrical imperfection or coordinate changes will be discussed.

6. A tensegrity configuration space

Design of tensegrity structures involves moving nodes of existing structures. Let np be the number of
active (or adjustable) nodal coordinates. For example, the dimension np of the configuration space of the
three-bar tensegrity in Fig. 4a with base nodes fixed is nine. In a configuration or design parameter space
R | an existing tensegrity structure is denoted by a vector &,. The constraint equation in the configuration
space is

0 = det(ATA) = 0. (23)
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The above holonomic constraint (Frankel, 1997) defines a hyper-surface for accessible configurations in R"™
with (np — 1) degrees of freedom if ng = dim(null A)=1. The normal direction to the hyper-surface is not
accessible by satisfying the equilibrium equations with pre-stresses from &,. The admissible direction €& is,
therefore, orthogonal to grad Q and is defined by

do(¢) = (grad 0,¢),, = 0. (24a)

An admissible coordinate change A€, may be obtained from a trial A¢ by using the Gram—Schmidt pro-
cedure with an appropriate vector norm ||| as

grad QO
lgrad Q|

The forbidden neighborhood configurations can only be realized by applying external nodal forces. Upon
the removal of external forces, a pre-stressed tensegrity structure returns to a configuration on the equi-
librium hyper-surface.

For an n-bar tensegrity module in Fig. 2, Eq. (14a) with a twist angle defined by Eq. (16) gives a quarter
circle with radius R*> = »* — 7} in the ry,, h-plane:

A, = A¢ — (grad O, Af) (24b)

rﬁ + R =b - ré. (25)

This equation describes an erection path of the n-bar module from # = 0, collapsed on the base plane, to the
prescribed height # < R on the hyper-surface (23). Any point connected from the current tensegrity con-
figuration &, by a path on the hyper-surface (23) can be reached by satisfying self-equilibrium conditions. It
is possible to deviate from a prescribed path as long as the new path remains on the hyper-surface (23). Fig.
6 illustrates the projected hyper-surface in the x,y,z-coordinate space of node 1 of the 3-bar tensegrity
module by fixing nodes 2 and 3. At node 1, the y-axis is in the radial direction and the x-axis is tangent to
the top inscribing circle. The forbidden grad Q direction is in the displacement direction of the mechanism,
illustrated in Fig. 3a. It is noted that all continuous changes of configurations on the equilibrium hyper-
surface require some work for changing reference lengths of elements including the work done against
existing pre-stresses.

Eq. (23) guarantees the existence of admissible neighborhood of &, as well as the forbidden grad Q
direction. By assuming that a small change A&, has been made on the hyper-surface, the sensitivity of pre-
stress and infinitesimal mechanism modes with a small configuration change or “geometrical imperfection”
is investigated. Let the equilibrium matrix at &, be denoted by A,. The change of the configuration by

Fig. 6. An equilibrium hyper-surface of three-bar tensegrity module at node 1.
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¢ = ||A&,|| causes a small change of the equilibrium matrix from A, to A = Ay + ¢A;. The resulting changes
in ATA and AAT are both on the order of .

Consider a symmetric np X np matrix Cy, with dim(null Cy)=m. The eigenpairs are numbered in the
order of ““increasing’ eigenvalues, and eigenvectors are orthonormalized:

Cod, =0, i=1,...,m, (26a)

Cd, =o', i=m+1,...,np. (26b)

Let a perturbed symmetric np x np matrix be H= Cy + €¢C; with det H=0 for a small number &. If
m = dim(null H)=dim(null Cy) and nonzero eigenvalues are well separated from zero, it will be shown that
the change of eigenvectors in null H is of the order of &. The eigenvectors h; corresponding to zero ei-
genvalues, i.e., h; in null H, satisfy

C()hj = _SCIhj, _]: 1,...,m. (273.)
The right-hand term of Eq. (27a) can be expanded by d,,.1,d,», ..., d,, since it exists in the range space of
C()Z
np
Cih; = Z (d;, Cihy), d:. (27b)
i=m+1

Next, h; is expanded in d’s as,

np
hy = ad. (28)
i=1

Substitution of Eq. (28) into Eq. (27a) with Egs. (26a)—(27b) yields

az (d;,Ch)),

i=m+1 l

By approximating h; on the right-hand side by d;, one finds a desired expansion:

h~d—az (d;,Cd)), (29)
i=m+1 ’

The above result applied to ATA and AAT shows that for a small change of configuration on the order of
¢ remaining on the self-equilibrium surface, the changes in pre-stress and infinitesimal mechanism modes
are also on the order of ¢ if the first nonzero eigenvalue o2, is well separated from zero and
dim(null Cy) =dim(null H). In the case of tensegrity structures, singular values are well separated from
zero. Further, in the modal analysis of pre-stressed tensegrity structures illustrated in the first part of the
paper, the natural frequencies corresponding to deformation modes are at least an order of magnitude
larger than those of the infinitesimal mechanism modes. As Egs. (21a)—(21¢), (1.36b) and (1.36¢) exhibit, the
elastic modulus of infinitesimal mechanism modes is on the order of pre-stress, while that of the defor-
mation modes is on the order of Young’s modulus.

7. Concluding remarks
Linearized Lagrangian equations were applied to static analyses of tensegrity structures with Mx <0

With respect to the initial shape finding, the equivalence between the twist angle theorem based upon
a simple geometrical analysis and the equilibrium analysis was shown for cyclic cylindrical tensegrity
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modules. It was found that in a pre-stressed tensegrity structure of first-order mechanism, all infinitesimal
mechanisms were isotropically stiffened at each node by a single pre-stress mode. Both static and dynamic
responses of tensegrity structures were characterized by infinitesimal mechanism modes. In the initial quasi-
static loading, infinitesimal mechanisms exhibited soft response. As the deformation advances, the stiffness
of tensegrity structures increased almost quadratically with the infinitesimal mechanism displacements.
Therefore, if bars were properly designed against buckling, tensegrity structures exhibited stable hardening
response. In summary, to analyze static and dynamic responses of pre-stressed tensegrity structures, it is
extremely important to compute infinitesimal mechanisms of tensegrity modules and to interpret global
deformation modes of tensegrity structures in terms of infinitesimal mechanism modes.
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